High-Density Transcranial Electrical Stimulation

Presentation to the Design of Medical Device Conference on April 14, 2009

These slides have been modified for distribution.

Marom Bikson : Bikson@ccny.cuny.edu

Lucas Parra, Abhishek Datta, Maged Elwassif, Davide Reato, Varun Bansal, Jinal Patel, Julian Diaz, Louis Olleris

Neural Engineering Laboratory
Department of Biomedical Engineering
The City College of New York of CUNY
Brain Electrotherapy
The application of electricity to treat neurological and psychiatric disorders

- Diverse applications (neuropsychiatric, rehabilitation, cognitive performance…)
- Individualized therapy
- Targeted brain modulation (space + time)
- Safe (minimal complications + counter-indications)
- Cost
Brain Electrotherapy
The application of electricity to treat neurological and psychiatric disorders

- Diverse applications (neuropsychiatric, rehabilitation, cognitive performance…)
- Individualized therapy
- Targeted brain modulation (space + time)
- Safe (minimal complications + counter-indications)
- Cost
Brain Electrotherapy

The application of electricity to treat neurological and psychiatric disorders

- Diverse applications (neuropsychiatric, rehabilitation, cognitive performance…)
- Individualized therapy
- Targeted brain modulation (space + time)
- Safe (minimal complications + counter-indications)
- Cost

Transcranial Electrical

Transcranial Magnetic

Invasive Leads
(also Vagus, Spinal..)
FEM analysis of transcranial electrotherapy focality

Conventional Transcranial (large pad) High-density Transcranial (4x1 Ring)
“Conventional” transcranial electrotherapy
“Conventional” transcranial electrotherapy
High-density transcranial electrotherapy
High-density transcranial electrotherapy
High-density transcranial electrotherapy

Transcranial Focality

Application specific configurations

(4x1, 4x4, …)

Targeting of cortical structures

Balance of depth and focality
High-density transcranial electrotherapy hardware
High-density transcranial electrotherapy safety

Skin safety and comfort

The City College of New York (IRB+)
NIH National Institute of Neurological Disorder and Stroke (IRB+)
FDA – assessment of “nonsignificant risk” (NSR). IDE except
High-density transcranial electrotherapy

Transcranial Focality
Application specific configurations
(4x1, 4x4....)
Targeting of cortical structures
Balance of depth and focality

Safe and painless
Non-invasive, no seizure hazard
Arbitrary waveform
Sub-threshold paradigms
(axonal guidance, neuro-generation....)
Brain Electrotherapy

The application of electricity to treat neurological and psychiatric disorders

- Diverse applications (neuropsychiatric, rehabilitation, cognitive performance...)
- Individualized therapy
- Targeted brain modulation (space + time)
- Safe (minimal complications + counter-indications)
- Cost
<table>
<thead>
<tr>
<th>Disease (Clinical Evaluation/ FDA Status)</th>
<th>Waveform control</th>
<th>Targeting Ability</th>
<th>Invasiveness / Side effects</th>
<th>Application Environment</th>
<th>Selected Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroconvulsive Therapy (ECT)</td>
<td>Depression, Mania</td>
<td>Poor - Pulse train only</td>
<td>Poor Non-focal</td>
<td>Non-Invasive / Brain Damage, memory loss</td>
<td>Requires trained clinical staff</td>
</tr>
<tr>
<td>Vagus Nerve Stimulation (VNS)</td>
<td>Epilepsy, Depression (debated)</td>
<td>Poor - Pulse train only with indirect modulation</td>
<td>Indirect Unknown</td>
<td>Invasive. Implanted pacemaker and electrodes attached to vagus nerve</td>
<td>Requires trained clinical staff for deployment and optimization</td>
</tr>
<tr>
<td>Deep Brain Stimulation (DBS)</td>
<td>Parkinson, Epilepsy, Depression, Dystonia</td>
<td>Moderate – brief balanced pulses</td>
<td>Excellent</td>
<td>Invasive. Perforation of skull and implanted pacemaker electrodes</td>
<td>Requires trained clinical staff for deployment and optimization</td>
</tr>
<tr>
<td>Transcranial Direct Current Stimulation (tDCS)</td>
<td>Stroke Rehabilitation, Depression, Dystonia, Improvement in: Memory, Learning, amblyopic eye</td>
<td>Poor – DC current</td>
<td>Poor</td>
<td>Non-invasive, DC current between two scalp electrodes / Bi-phasic effects</td>
<td>Robust/simple, potential for home use</td>
</tr>
<tr>
<td>High-Density Transcranial Electrical Stimulation (HD-tES)</td>
<td>Customizable*</td>
<td>Excellent</td>
<td>Good / Excellent</td>
<td>Non-invasive, arbitrary waveform between two+ scalp electrodes</td>
<td>Robust/simple (computer guided). Potential for home use</td>
</tr>
</tbody>
</table>

1= Clinical Trial Phase I
2= Clinical Trial Phase II
3= Clinical Trial Phase III
4= Clinical Trial Phase IV
A= FDA Approved
U= Under Clinical Trial
“Rational” electrotherapy
Patient and disease customized electrical therapy.

Pre-stimulation: work-up (MRI)

Pre-stimulation:
Behavioral outcomes

Post-stimulation:
Computational (FEM) models

Treatment (Program) generator

Electrotherapy

Configuration
Configuration accessories

Programming / Configuration